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Key points:
e large-scale salinity-driven halosteric magnitudes can be 25% or more of thermosteric change
e Halosteric changes can counteract or reinforce thermosteric changes
e Climate models reproduce the basin-scale features of observed halosteric changes
e Halosteric patterns provide insights into water cycle and land-ice changes
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1. Abstract

Of the many processes contributing to long-term sea-level change, little
attention has been paid to the large-scale contributions of salinity-driven halosteric
changes. We evaluate observed and simulated estimates of long-term (1950-present)
halosteric patterns and compare these to corresponding thermosteric changes. Spatially
coherent halosteric patterns are visible in the historical record, and are consistent with
estimates of long-term water cycle amplification. Our results suggest that basin-scale
halosteric changes in the Pacific and Atlantic are substantially larger than previously
assumed, with observed estimates and coupled climate models suggesting magnitudes
of ~30% of the corresponding thermosteric changes. In both observations and
simulations Pacific basin-scale freshening leads to a density reduction that augments
coincident thermosteric expansion, whereas in the Atlantic halosteric changes partially
compensate strong thermosteric expansion via a basin-scale enhanced salinity density
increase. Although regional differences are apparent, at basin-scales consistency is
found between the observed and simulated partitioning of halosteric and thermosteric
changes, and suggests that models are simulating the processes driving observed long-
term basin-scale steric changes. Further analysis demonstrates that the observed
halosteric changes and their basin partitioning are consistent with CMIP5 simulations
that include anthropogenic CO; forcings (Historical), but are found to be inconsistent

with simulations that exclude anthropogenic forcings (HistoricalNat).
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2. Introduction

Changes to global mean sea-level (GMSL) are a well-documented response to a
changing climate (Church et al 2013a), and many processes associated with sea-level
(SL) changes are active areas of research (e.g. Alley et al 2005; Velicogna 2009; Stammer
2010; Rignot et al 2011; Bouttes et al 2012, 2013; Lorbacher et al 2012; Brunnabend et
al 2012; Shepherd et al 2012; Wada et al 2012; Bouttes and Gregory 2014; Griffies et al
2014). However, salinity-driven halosteric patterns of long-term SL change have
received relatively little attention. Regional halosteric anomalies have been shown to be
important drivers of steric SL variability on short timescales (Pattullo et al 1955; Tabata
et al 1986; Maes 1998; Sato et al 2000; Wunsch et al 2007; Suzuki and Ishii 2011).
However, these changes have been mostly ignored in long-term (>30 year) observed
estimates of SL change because halosteric fluctuations (excluding comparatively small
mass contributions associated with land-ice changes e.g. Antonov et al 2002; Munk
2003; Ishii et al 2006) sum to near zero in the global mean (e.g. Gregory and Lowe
2000). Consequently previous GMSL change estimates have primarily considered
thermosteric effects along with mass contributions (Church et a/ 2013a).

Estimates of halosteric and thermosteric changes are respectively derived from
in-situ observations of salinity and temperature. Previous studies have reported long-
term change estimates for ocean salinity (Antonov et al 2002; Boyer et al 2005; Ishii et
al 2006; Hosoda et al 2009; Durack and Wijffels 2010; Helm et al 2010; Durack et a/
2012, 2013; Skliris et al 2014) and temperature (Levitus et al 2000, 2005a; Antonov et al
2005; Ishii et al 2006; Smith and Murphy 2007; Domingues et al 2008; Ishii and Kimoto

3
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2009; Gleckler et al 2012; Levitus et al 2012). There is a general agreement in the broad-
scale patterns and magnitudes of salinity and temperature changes among these
independent studies. Formal climate change detection and attribution studies (Barnett
et al 2005; Pierce et al 2006, 2012; Pardaens et al 2008; Gleckler et al 2012) have
attributed ocean temperature changes to anthropogenic CO; forcing, and the recent
studies of Pierce et al (2012) and Terray et al (2012) have detected an anthropogenic
influence which is driving observed ocean salinity changes.

Fewer studies have focused on derived steric changes than on the underlying
changes to the salinity and temperature fields. Several observational (e.g. Pattullo et a/
1955; Tabata et al 1986; Maes 1998; Sato et al 2000; Antonov et al 2002; Levitus et al
2005b; Ishii et al 2006; Suzuki and Ishii 2011) and ocean reanalysis (e.g. Carton et al
2005; Wunsch et al 2007; Kéhl and Stammer 2008) studies have highlighted the
importance of salinity to regionally observed SL. Others have considered the global
patterns of projected 21 century SL changes from climate models (Landerer et al 2007;
Yin et al 2010; Pardaens et al 2011; Yin 2012; Bouttes and Gregory 2014).

In the present study we extend upon these previous analyses to contrast the
relative importance of basin-scale halosteric and thermosteric changes in two
independent observational datasets over the period 1950 to 2008, and use these
estimates to evaluate the historically forced simulations available from CMIP5 (Taylor et
al 2012). We show that halosteric patterns can be very important at basin-scales even

though they do not contribute to GMSL change.



93 The paper is organized as follows: in section 2 we describe the observations,

94  model simulations and methods used in this study, in section 3 we compare multi-

95  decadal observed and simulated halosteric and thermosteric trends at basin- to

96  regional-scales. In section 4 we conclude by discussing the implications of this work,

97  touch on the limitations of the present study and outline further work required to better

98 understand large-scale observed and simulated SL changes.

99 2. Data and methods

100 To evaluate the long-term halosteric and thermosteric SL changes from CMIP5
101  Historical simulations (Taylor et al 2012), we consider data from two independent

102  observational analyses (Ishii and Kimoto 2009; Durack and Wijffels 2010 - hereafter
103 Ish09 and DW10 respectively).

104 The Ish09 (Ishii and Kimoto 2009) analysis exploits the full salinity and thermal
105  archive and employs a bias correction scheme in order to utilise problematic

106  eXpendable BathyThermograph (XBT) and Mechanical BathyThermograph (MBT)

107  profiles, that contain well-documented depth and thermister biases (Gouretski and
108  Koltermann 2007; Wijffels et al 2008; Abraham et al 2013; Cowley et al 2013). This

109  analysis uses an objective mapping technique to generate monthly mean globally

110  gridded salinity and temperature maps for the period 1945-2012. We note that long-
111 term temperature trends (and the corresponding thermosteric patterns) from the Ish09
112 analysis compare well with other objectively analysed products (e.g. Levitus et al 2012;

113 Good et al 2014).
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The DW10 (Durack and Wijffels 2010) analysis is based on the full salinity archive
that is comprised of high-quality Niskin and Nansen (bottle) casts and CTD (conductivity-
temperature-depth) profiles of salinity and temperature. As a consequence, while
exploiting considerably less data than corresponding temperature-only analyses
(CTD/bottle profiles comprise ~30% of the global ocean temperature archive), the
results are free from XBT and MBT biases. We note however, that this analysis compares
well to other globally integrated estimates of ocean heat content change that use the
full temperature archive. The analysis uses a spatial and temporal parametric model,
optimized to recover the broad-scale ocean mean structure, the annual and semi-annual
cycle (and their spatial gradients) and the multidecadal linear trends from the sparse
hydrographic (salinity and temperature) database over 1950-2008. Importantly, this
analysis uses the Argo data and exploits the unprecedented spatial and seasonal
coverage to best reduce seasonal and spatial sampling bias. In the sparsely observed
Southern Hemisphere oceans, the analysis relies on Argo’s ability to highly resolve the
mean, seasonal and EI-Nino Southern Oscillation (ENSO) responses in salinity and
temperature, and thus reduces aliasing due to these dominating modes of variability.

The CMIP5 models assessed in this study are a subset of the full suite, as drift
correction in the deeper ocean was necessary. Consequently, 27 independent models
were assessed and specific details on the model simulations used in this analysis are
contained in Table 1.

In order to directly compare the observational trends with those of the CMIP5

models it was necessary to account for model drift (Covey et al 2006; Sen Gupta et al
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2012, 2013). To account for drift, a linear least-squares fit to a contemporaneous 150-
year portion of the piControl simulation (1900-2049) was obtained at each grid point in
three dimensions, and this drift estimate was then subtracted grid point by grid point
from the corresponding forced simulation trend estimate before calculation of steric
anomalies was undertaken.

From each observational dataset, 59-year mean climatologies (1950-2008) were
constructed along with least-squares linear trends. For models, 55-year mean
climatologies (1950-2004) were constructed along with least-squares linear trends.
These fields were calculated on the native grid of the available observations or models,
from annual means derived from monthly mean data for Ish09 and models that
contributed to CMIP5. We note the temporal discrepancy between observed and
simulated analyses which is a result of the limitation of CMIP5 Historical simulations
which end in 2005 and the DW10 study which is dependent on the modern Argo period
(2004-2008) to estimate the mean climatology and seasonal cycle. We investigated this
temporal discrepancy using the Ish09 data, and found that the 1950-2008 and 1950-
2004 trend maps are very similar. Consequently the observation-model temporal
discrepancy does not have much influence on the key conclusions of the study.

Estimates of total steric, thermosteric and halosteric specific volume anomalies
(svan) were then calculated from all data using the UNESCO equation of state (Millero et

al 1980; Millero and Poisson 1981):

Svantatul = IO(Sexp ’ 7—'exp > P) - p(g’ f’ P)
= (8, T, P)= p(S,T,P) (1)

SVaN, 0 oie = SVAN,,,,, — Svan

svan

thermosteric Xp ?

total thermosteric
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where S denotes salinity, T denotes in-situ temperature and P pressure (dbar). In
(1) overbars represent the climatological mean and subscript exp indicates the
climatological values plus trend anomalies obtained from the observations and models.
A key advantage of this method is that the nonlinearities in the equation of state are
explicitly resolved, rather than calculating halosteric and thermosteric changes
independently by using the coincident climatological values and perturbing salinity or
temperature individually.

To enable observation and model intercomparison, and the calculation of a
multi-model mean (MMM), all fields were regridded to a 2 x 1 (longitude, latitude)
degree grid extending from 70°S to 70°N which excludes marginal seas (Mediterranean
Sea, Baltic Sea, Red Sea, Persian Gulf, China Seas, Sea of Japan, Java Sea, Banda Sea and
Arafura Sea) and vertically interpolated to 18 standard pressure levels (5, 10, 20, 30, 40,
50, 75, 100, 125, 150, 200, 300, 500, 700, 1000, 1500, 1800, 2000 dbar). To fairly
compare both observations and models that have differing land/sea masks, after
horizontal interpolation an iterative nearest neighbour filling algorithm was employed

to infill regions so that the land/sea masks of all analyses were identical.



173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

3. Results

Steric changes: Global perspective

Warming-driven thermosteric expansion (Figure 1 A2 versus B2), like the
corresponding changes to ocean heat uptake, is fairly homogenous throughout and
between individual basins in the global ocean. There is agreement in the sign of
observed estimates nearly everywhere, particularly in the well-sampled Northern
Hemisphere, where a relatively larger thermosteric expansion is apparent in the Atlantic
and in the western subtropical North Pacific. In the Southern Hemisphere we find
agreement along the axis of the Antarctic Circumpolar current. These features are also
captured in the CMIP5 MMM (Figure 1 C2), however as expected the MMM result is
smoother, with magnitudes smaller than the observations as a result of averaging across
simulations with uncorrelated variability. The thermosteric contraction (cooling) in the
western subpolar North Pacific and around Australia, though present in the two
observational estimates, is largely absent in the MMM. There is less agreement
between observations in the Southern Hemisphere with larger magnitude changes
apparent in DW10 and the MMM (Figure 1 B2, C2) compared to a muted result in Ish09
(Figure 1 A2). We note that discrepancies between the observations in the Southern
Hemisphere are likely due to poor spatio-temporal observational coverage and
conservative infilling methods (e.g. Gille 2002, 2008; Gregory et al 2004; Gouretski and
Koltermann 2007). Discrepancies between the observed and simulated estimates,
particularly in the North Pacific, may be in part associated with the unresolved long-

term mode of natural variability in observations (e.g. Pacific Decadal Oscillation, PDO;

9
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Mantua et al 1997) as agreement exists in the observations however is absent in the
MMM.

In both observational estimates large-scale halosteric contraction (increased
salinity) is evident across most of the Atlantic and western Indian Oceans, in contrast to
expansion (decreased salinity) in the Pacific (Figure 1 A3 versus B3). This basin contrast
between halosteric contraction and expansion is also apparent in the MMM (Figure 1
C3), but inter-model agreement greater than 50% is only found in the equatorial and
South Pacific regions (no stippling, Figure 1 C3). In the Atlantic, observations express a
sign reversal to halosteric expansion for latitudes greater than 50°N. This may be linked
to coincident enhancements to precipitation and riverine discharges into the Arctic
Ocean, as well as cryospheric contributions (Peterson et al 2006; Kwok and Cunningham
2010; Krishfield et al 2012; Straneo and Heimbach 2013) or may also be explained by
ocean dynamical responses (e.g. Bouttes et al 2013), however we do not further
investigate potential sources here.

We note that the largest magnitude halosteric and thermosteric changes are
often opposite in sign, and therefore lead to a more homogeneous pattern in the
resolved total steric changes, a feature particularly prominent in the North Atlantic
(Figure 1 A1-C1). This density compensation is not well understood, however
mechanisms driving the compensation have been discussed by Mauritzen et a/ (2012)

and Bouttes et al (2013).

10



215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

Regional importance of salinity

As noted earlier, GMSL change estimates have mostly neglected halosteric
effects, however a number of more recent thermosteric (ocean heat content [OHC])
change estimates have utilised coincident sea surface height (SSH; total steric) in order
to better estimate the regional distribution of ocean heat uptake and thermosteric SL
changes (Domingues et al 2008) or provide OHC change uncertainty estimates (Lyman
and Johnson 2008, 2014). However, as shown (Figure 1 A3-C3) we note that halosteric
change magnitudes are large enough in many regions that they play an important role in
column-integrated total steric volumes and should not be neglected in future SL studies.

To further evaluate the importance of salinity, we present maps that show the
contribution of the absolute halosteric change to the sum of absolute thermosteric and
halosteric changes. To highlight changes on larger spatial scales and reduce noise
associated with the observational estimates, all fields were smoothed before plotting
using a 3-point boxcar filter, which is applied to the 1° latitude by 2° longitude grid.
These maps show where the halosteric magnitude is less than 30% (orange) or greater
than 30% (blue) of the absolute total, with the 30% threshold obtained by comparing
basin mean MMM halosteric versus thermosteric values (see observed and simulated
basin-scale comparisons in a subsequent section, Figure 4). We note that this is an
extremely difficult test, as both change sign and magnitude in three dimensions are
combined to provide the grid point value. The spatial disagreement between
observations (stippling) due to observational sparsity and differing analysis techniques is

apparent, however large-scale similarities exist (Figure 2). Blue regions are shown in the
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high latitude north Pacific and Atlantic along with the Western equatorial Pacific and
southern subtropical Pacific and Indian Ocean, and suggest halosteric changes may in
some regions be the leading contributor to total steric change (greater than 50% of the
total: dark blue). However, we note that even though correspondence exists between
the observed estimates, the differences require further investigation to better

understand the influence of data sparsity convolved with unresolved variability.
Regional steric compensation

Previous studies have identified several regional features where counteracting
halosteric contraction (increased salinity) and thermosteric expansion (warming)
changes occur (e.g. Antonov et al 2002; Levitus et al 2005b; Ishii et al 2006; Lowe and
Gregory 2006; Pardaens et al 2011; Mauritzen et al 2012; Bouttes et al 2013; Griffies et
al 2014). As a result the total steric change is more spatially uniform between and across
basins (Figure 1 A1-C1). In observations, examples include the thermosteric expansion
(warming) that is partially offset by halosteric contraction (enhanced salinity) in the
North Atlantic, and thermosteric contraction (cooling) that is largely offset by halosteric
expansion (decreased salinity) in the equatorial and southwestern Pacific. A similar
compensation occurs in the eastern Indian Ocean, while in the northwestern Indian
Ocean strong halosteric contraction (enhanced salinity) compensates for a strong
thermosteric expansion (warming). Another key region where strong compensation
occurs is in the subpolar North Atlantic, which shows a halosteric expansion (decreased
salinity) and corresponding thermosteric contraction (cooling) in observations (Figure 1).

The models exhibit a large spread in the polar and subpolar regions, and the sign of

12
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changes in the subpolar North Atlantic is highly variable even between multiple
realisations of the same model (not shown). We note that subpolar regions are
complicated by the proximity of sea-ice, the influence of which is beyond the scope of
this study. Some of the regions where observed halosteric and thermosteric changes
compensate are also present in the MMM, but are much weaker than in observations
and are likely due to the smoothing that results from averaging across modelled results.
To further investigate the basin-scale consistency in the patterns of thermosteric
and halosteric changes, basin zonal means for each observational estimate and the
MMM are shown (Figure 3). The sign consistency between the observed and modelled
estimates is encouraging, with particularly good broad-scale agreement in the Pacific
and Atlantic basins. In the Pacific (Figure 3B), all estimates suggest a freshening-driven
halosteric and warming-driven thermosteric expansion is occurring — steric changes that
augment. Observations and simulations are also consistent in the Atlantic, however with
the opposite signed changes — density compensation through halosteric contraction and
thermosteric expansion. For the Southern Hemisphere Pacific and Indian Oceans, both
the DW10 and MMM suggest larger halosteric change amplitudes than Ish09, and their
corresponding thermosteric changes are approximately equal in both hemispheres. The
larger Southern Hemisphere result is not reproduced in Ish09 possibly due to the
conservative nature of resolved changes in regions of poor spatial coverage (e.g. Gille
2002, 2008; Gregory et al 2004; Gouretski and Koltermann 2007). In the Atlantic (Figure
3C), a strong warming-driven thermosteric expansion and a near basin-wide halosteric

contraction approximately half the thermosteric magnitude is present in observations, a
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feature that is matched by the MMM in the North Atlantic. In the subpolar Atlantic,
strong halosteric and thermosteric agreement is present between observations,
however the MMM shows an equally large halosteric change of the opposite sign. For
the Indian (Figure 3D), the observations and MMM mostly agree in sign of the
thermosteric change, with warming across the entire basin. However, due to the
presence of marginal seas with strong regional trends (Arabian Sea and Bay of Bengal),
there is no agreement in halosteric sign between the observations and MMM north of
the equator. In the globally integrated result, reasonably good agreement exists
between the observations and MMM (Figure 3A), with the exception of the northern
high latitudes. However, these global zonal mean results mask the strong zonal salinity
structure within basins as well as the compensation in the halosteric responses within

and between basins.
Observed and simulated basin-scale comparisons

To further examine the ability of the CMIP5 suite to simulate the observed
basins-scale steric responses, we contrast the Atlantic and Pacific long-term basin mean
halosteric trends for the observations, CMIP5 MMM and individual model results (Figure
4A). The joint Pacific and Atlantic basin sign consistency of the MMM with observations
(Figure 1 A3, B3 versus C3) is captured in 23 of 27 Historical simulations, with halosteric
contraction (increased salinity) in the Atlantic and expansion (decreased salinity) in the
Pacific (Figure 4A, grey symbols). In Figure 4 we also include CMIP5 HistoricalNat
simulations that exclude anthropogenic CO, and aerosol forcing (green symbols), and

for halosteric changes these results span all four quadrants of the scatterplot. This
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contrast between the Historical and HistoricalNat results suggests anthropogenic forcing
is required to produce the halosteric basin asymmetry in the Historical simulations,
consistent with the recent positive detection and attribution analyses of Pierce et al
(2012) and Terray et al (2012).

We also find that there is substantial agreement between observed and
simulated basin contrasts in thermosteric changes (Figure 4B), here with a positive SL
contribution in both basins. As with halosteric changes, thermosteric changes in the
Historical simulations are in much better agreement with observations than the
HistoricalNat simulations, and are again consistent with previous detection and
attribution studies (Barnett et al 2005; Pierce et al 2006, 2012; Pardaens et al 2008;
Gleckler et al 2012).

Interestingly, when comparing the magnitude of the halosteric basin-scale
changes to their thermosteric counterparts, we find they are not negligible as previously
assumed. In the Atlantic the basin mean halosteric compensation of the thermosteric
anomaly for CMIP5 Historical simulations is 38% and may hide local steric expansion. In
the Pacific, where the sign of halosteric and thermosteric agree, halosteric changes also

contribute 38% to the total steric anomaly.

4. Discussion

Our examination of the observed long-term halosteric contributions to SL
suggests that coherent changes throughout the observed ocean depth have occurred at

basin-scales during 1950-2008. By contrasting halosteric and thermosteric changes, our
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findings highlight that salinity contributions to SL changes are important even at basin-
scales.

Unlike temperature, observed and simulated basin-scale salinity changes exhibit
a dipole response — a freshening Pacific and a saltier Atlantic (Boyer et al 2005; Hosoda
et al 2009; Durack and Wijffels 2010; Helm et al 2010; Durack et al 2012, 2013; Terray et
al 2012; Skliris et al 2014) — providing a more clearly defined basin-scale fingerprint of
change when compared to the relatively homogenous observed upper-ocean warming
pattern (Levitus et al 2012; Rhein et al 2013). Consequently, observed halosteric
changes show greater spatial heterogeneity than their thermosteric counterparts
(Figure 1 A3, B3 versus A2, B2), and there is good agreement between the observed
analyses. This basin contrast of depth-integrated salinity changes is consistent with
reported surface salinity pattern amplification and corresponding changes to the water
cycle (Hosoda et al 2009; Durack and Wijffels 2010; Helm et al 2010; Durack et al 2012,
2013; Pierce et al 2012; Terray et al 2012; Skliris et al 2014). The inhomogeneous nature
of basin-scale ocean salinity changes and the observed enhancement of spatial
gradients and basin contrasts provides an opportunity to evaluate historically forced
climate model simulations with ocean salinity observations which are largely
independent of temperature.

Comparison of observations with CMIP5 simulations suggests anthropogenic
forced changes are driving a coherent pattern of broad-scale halosteric (salinity-driven)
changes in the world ocean in agreement with past studies (Pierce et al 2012; Terray et

al 2012). These patterns of halosteric change are consistent with previous work that
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reported near-surface (and subsurface) ocean salinity pattern amplification and
associated water cycle change (Boyer et al 2005; Hosoda et al 2009; Durack and Wijffels
2010; Helm et al 2010; Durack et al 2012, 2013; Skliris et al 2014), however we note that
attribution of the processes driving such changes is complex (e.g. Lowe and Gregory
2006; Bouttes et al 2012, 2013; Bouttes and Gregory 2014) and not yet well understood.
Conversely, simulations that exclude anthropogenic forcing (CO; and aerosols;
HistoricalNat) over the period of analysis cannot reproduce the pattern of halosteric and
thermosteric changes that are captured in observed estimates.

We note that natural variability associated with climate modes can drive
measurable changes to regional patterns of ocean surface freshwater fluxes that can
influence GMSL on short timescales (Pardaens et al 2008; Boening et al 2012; Fasullo et
al 2013; Cazenave et al 2014). However, the influence of natural variability is likely
reduced in long-term (50-year or longer) observed and modelled change estimates such
as those presented in this study (Figure 4). In addition to changes in the surface
freshwater fluxes (evaporation minus precipitation; E-P), depth-integrated changes are
also influenced by ocean circulation changes that can also be responsible for
salinity/freshwater redistribution, or water mass changes attributable to the coincident
broad-scale warming (Lowe and Gregory 2006; Durack and Wijffels 2010; Bouttes et a/
2012, 2013; Bouttes and Gregory 2014).

The current generation CMIP5 climate models do not interactively simulate land-
ice changes, and glacier and ice-sheet changes are primarily calculated using offline

models (Church et al 2013b). The inclusion of these processes is an anticipated
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improvement for future coupled modelling systems that will be contributing to CMIP6
(Meehl et al 2014). Consequently, consideration for such differences must be accounted
for during observation-model intercomparison studies and particularly when
considering future model projections, as land-ice contributions become a more
dominant contributor to GMSL.

Further work is necessary to better understand and quantify the processes
responsible for the observed and simulated regional SL changes, and for this idealised
ocean-only simulations are a well suited compliment to results from fully-coupled
models models (Stammer 2010; Bouttes et a/ 2012, 2013; Durack et al 2012; Lorbacher
et al 2012; Bouttes and Gregory 2014; Griffies et al 2014). Additional work is also
needed to better understand the complex space-time observational coverage and its
impact on estimates of spatially complete steric changes (e.g. Gille 2006; Cheng and Zhu
2014). This is particularly relevant as recent works have highlighted that Southern
Hemispheric long-term global ocean heat content and thermosteric change estimates
are likely biased low due to the poor spatial coverage of historical observations and
current analysis techniques (Gille 2002, 2008; Gregory et al 2004; Gouretski and
Koltermann 2007).

Our study confirms that halosteric contributions to steric SL changes are non-
negligible on regional to basin-scales. This result has not been acknowledged in previous
works as most long-term SL change assessments have been largely focused on GMSL
change, thereby explicitly excluding the consideration of halosteric effects. The

magnitude of halosteric changes suggests that some care is required when using SSH

18



390

391

392

393

394

395

396

397

altimetry to infer regional thermosteric or heat content change (Domingues et al 2008)
or their uncertainties (Lyman and Johnson 2008, 2014), because neglecting halosteric
effects may mask (or enhance) regional warming signals (Figure 2).

Our new results also demonstrate that contrasting basin-scale halosteric and
thermosteric changes reveals robust signatures in observations, and that the current
CMIP5 generation of historically forced climate models capture the integrated basin-
scale characteristics of the observed halosteric changes, even in the presence of

substantial regional discrepancies.
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730 Tables

731  TABLE 1. Observational and CMIP5 model datasets (model numbers denote realisation

732 X and model physics version Y: rXilpY)
1950-2004 1950-2004 Hist. drift
correction
# Model/Observation Historical (Obs. HistoricalNat piControl
version)
Ishii & Kimoto (2009) — 1950-2008 6.13
Durack & Wijffels (2010) — 1950- 1.0
2008
1 ACCESS1-0 1 - 1
2 ACCESS1-3 1-2 - 1
3 CanESM2 1-5 1-5 1
4 ccsv4 1-6 1-2,4,6 1
5 CESM1-BGC 1 - 1
6 CMCC-CESM 1 - 1
7 CMCC-CMS 1 - 1
8 CNRM-CM5 1-10 1-5,8 1
9 CSIRO-Mk3.6.0 1-10 1-5 1
10 EC-EARTH 2-3,5-7,9-10,12,14 - 1
11 FGOALS-s2 1-3 - 1
12 FIO-ESM 1-3
13 GFDL-CM3 1-5 - 1
14 GISS-E2-H 1-5 (p=1-3) 1-5 (p=1,3) 1 (p=1-3)
15 GISS-E2-H-CC 1 - 1
16 GISS-E2-R 1-6 (p=1,3) 1-5 (p=1,3) 1
17 GISS-E2-R-CC 1 - 1
18 HadGEM2-CC 1-3 - 1
19 HadGEM2-ES 14 1-4 1
20 IPSL-CM5A-LR 1-6 1-3 1
21 IPSL-CM5A-MR 1-3 1-3 1
22 IPSL-CM5B-LR 1 - 1
23 MPI-ESM-LR 1-3 - 1
24 MPI-ESM-P 1 - 1
25 NorESM1-M 1-3 1 1
26 NorESM1-ME 1 - 1
27 bcc-csm1-1 2 - 1

733

27




734

735
736

737
738
739
740

Figures

70N 1
50N ¥

0 60E  120E, 180  120W  60W 00 60E  120E 180 = 120W  60W 00 60E  120E 180 = 120W  60W
Longitude Longitude Longitude
|

| I I I I y

-4 -3 -2 -1 0 1 2 3 4
FiG. 1. Long-term trends in 0-2000 dbar total steric anomaly (left column; A1-C1), thermosteric anomaly (middle column; A2-C2) and
halosteric anomaly (right column; A3-C3). Units are mm yr1. Observational maps show results from A) Ishii & Kimoto (2009; 1950-
2008), B) Durack & Wijffels (2010; 1950-2008) and C) the CMIP5 Historical multi-model mean (MMM; 1950-2004). Stippling is used
to mark regions where the 2 observational estimates do not agree in their sign (A1-A3, B1-B3) and where less than 50% of the
contributing models do not agree in sign with the averaged (MMM) map obtained from the ensemble (C1-C3).
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FIG. 2. The magnitude of the 0-2000 dbar column-integrated halosteric changes
compared to the integrated absolute steric change (the sum of absolute halosteric and
thermosteric changes). Orange colours indicate where the halosteric anomaly comprises
0-30% of the total steric magnitude, whereas blues indicate where halosteric comprises
>30%. Stippling is used to mark regions where the 2 observational estimates (A, B) do
not agree in their magnitude (either greater than [blue] or less than 30% [orange] which
is a threshold obtained from the analysis of basin average halosteric and thermosteric
changes [Figure 4]). Observational maps show results from A) Ishii & Kimoto (2009;
1950-2008), B) Durack & Wijffels (2010; 1950-2008) and C) the CMIP5 Historical multi-
model mean (MMM; 1950-2004).
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755  FIG. 3. Zonal mean 0-2000 dbar thermosteric anomaly (light colours) and halosteric anomaly (dark colours) for A) Global, B) Pacific, C)

756  Atlantic and D) Indian Ocean basins. Observational results from Ishii & Kimoto (2009; Light and dark blue, 1950-2008), Durack &
757  Wijffels (2010; Orange and red, 1950-2008) and the CMIP5 Historical multi-model mean (MMM; Grey and black, 1950-2004).
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759  FIG. 4. Area-weighted basin mean 0-2000 dbar A) halosteric and B) thermosteric trends
760  for the Pacific and Atlantic Oceans. Observational results from Ishii & Kimoto (2009; red,
761 1950-2008), Durack & Wijffels (2010; black, 1950-2008), CMIP5 Historical simulations
762  (grey; 1950-2004) and CMIP5 HistoricalNat simulations (green; 1950-2004).
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